1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
class Solution {
private:
vector<int> f, rank;
struct Edge {
int v, u, w;
bool operator < (const Edge& e) const {
return w < e.w;
}
};
int find(int x) {
return f[x] == x ? x : f[x] = find(f[x]);
}
bool _union(int x, int y) {
int fx = find(x), fy = find(y);
if (fx == fy) return false;
else if (rank[fx] > rank[fy])
swap(fx, fy);
rank[fy] += rank[fx];
f[fx] = fy;
return true;
}
public:
int minCostConnectPoints(vector<vector<int>>& points) {
int n = points.size();
if (n <= 1) return 0;
vector<Edge> graph;
for (int i = 0; i < n; ++i)
for (int j = i + 1; j < n; ++j)
graph.push_back({i, j,
abs(points[i][0] - points[j][0]) + abs(points[i][1] - points[j][1])});
f = vector<int>(n, 0);
rank = vector<int>(n, 1);
for (int i = 0; i < n; ++i)
f[i] = i;
sort(graph.begin(), graph.end());
int ans = 0;
for (Edge& e : graph)
if (_union(e.v, e.u)) {
ans += e.w;
if (--n == 1)
return ans;
}
return -1;
}
};

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
class Solution {
public List<List<String>> accountsMerge(List<List<String>> accounts) {
UF uf = new UF();
Map<String, Integer> emailToId = new HashMap<>();
Map<String, String> emailToName = new HashMap<>();
int id = 0;
for (List<String> account : accounts) {
String name = "";
for (String email : account) {
if (name.length() == 0) {
name = email;
continue;
}
emailToName.put(email, name);
if (!emailToId.containsKey(email))
emailToId.put(email, id++);
uf.union(emailToId.get(account.get(1)), emailToId.get(email));
}
}
Map<Integer, List<String>> ans = new HashMap<>();
for (String email : emailToName.keySet()) {
int i = uf.find(emailToId.get(email));
ans.computeIfAbsent(i, k -> new ArrayList<>()).add(email);
}
for (List<String> l : ans.values()) {
Collections.sort(l);
l.add(0, emailToName.get(l.get(0)));
}
return new ArrayList(ans.values());
}
}
class UF {
private int[] f;
public UF() {
f = new int[10001];
for (int i = 0; i <= 10000; i++)
f[i] = i;
}
public int find(int i) {
int j = i;
while (i != f[i])
i = f[i];
while (f[j] != i) {
int next = f[j];
f[j] = i;
j = next;
}
return i;
}
public void union(int i, int j) {
f[find(j)] = find(i);
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
class Solution {
public List<List<String>> accountsMerge(List<List<String>> accounts) {
Map<String, Set<String>> graph = new HashMap<>();
Map<String, String> emailToName = new HashMap<>();
for (List<String> account : accounts) {
String name = account.get(0);
for (int i = 1; i < account.size(); i++) {
graph.computeIfAbsent(account.get(i), k -> new HashSet<>());
emailToName.put(account.get(i), name);
if (i == 1) continue;
graph.get(account.get(i)).add(account.get(i - 1));
graph.get(account.get(i - 1)).add(account.get(i));
}
}
Set<String> visited = new HashSet<>();
List<List<String>> ans = new LinkedList<>();
for (String email : emailToName.keySet()) {
List<String> list = new LinkedList<>();
if (visited.add(email)) {
dfs(graph, email, visited, list);
Collections.sort(list);
list.add(0, emailToName.get(email));
ans.add(list);
}
}
return ans;
}
private void dfs(Map<String, Set<String>> graph, String email, Set<String> visited, List<String> list) {
list.add(email);
for (String next : graph.get(email))
if (visited.add(next))
dfs(graph, next, visited, list);
}
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
class Solution {
public:
bool checkStraightLine(vector<vector<int>>& coordinates) {
const int n = coordinates.size();
if (n == 2) return true;
if (coordinates[1][0] == coordinates[0][0]) {
int x = coordinates[0][0];
for (int i = 2; i < n; ++i)
if (coordinates[i][0] != x)
return false;
} else {
double k = (coordinates[1][1] - coordinates[0][1]) / (1.0 * coordinates[1][0] - coordinates[0][0]);
double b = coordinates[0][1] - k * coordinates[0][0];
for (int i = 2; i < n; ++i)
if ((k * coordinates[i][0] + b) != coordinates[i][1])
return false;
}
return true;
}
};

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
class UnionFind {
private:
vector<int> f, sz;
public:
UnionFind(int n): f(n), sz(n) {
for (int i = 0; i < n; ++i) {
f[i] = i;
sz[i] = 1;
}
}
int find(int x) {
return f[x] == x ? x : f[x] = find(f[x]);
}
void merge(int x, int y) {
int fx = find(x), fy = find(y);
if (fx != fy) {
if (sz[fx] > sz[fy])
swap(fx, fy);
sz[fy] += sz[fx];
f[fx] = fy;
}
}
int size(int x) {
return sz[find(x)];
}
};
class Solution {
public:
vector<int> hitBricks(vector<vector<int>>& grid, vector<vector<int>>& hits) {
const int R = grid.size(), C = grid[0].size();
UnionFind uf(R * C + 1);
vector<vector<int>> status = grid;
for (int i = 0; i < hits.size(); ++i)
status[hits[i][0]][hits[i][1]] = 0;
for (int r = 0; r < R; ++r)
for (int c = 0; c < C; ++c)
if (status[r][c] == 1) {
if (r == 0)
uf.merge(R * C, r * C + c);
if (r > 0 && status[r - 1][c] == 1)
uf.merge(r * C + c, (r - 1) * C + c);
if (c > 0 && status[r][c - 1] == 1)
uf.merge(r * C + c, r * C + c - 1);
}
const vector<int> dirs{-1, 0, 1, 0, -1};
vector<int> ans(hits.size(), 0);
for (int i = hits.size() - 1; i >= 0; --i) {
int r = hits[i][0], c = hits[i][1];
if (grid[r][c] == 0) continue;
int prev = uf.size(R * C);
if (r == 0)
uf.merge(c, R * C);
for (int j = 0; j < 4; ++j) {
int nr = r + dirs[j], nc = c + dirs[j + 1];
if (nr < 0 || nr >= R || nc < 0 || nc>= C || status[nr][nc] != 1) continue;
uf.merge(r * C + c, nr * C + nc);
}
int curr = uf.size(R * C);
ans[i] = max(0, curr - prev - 1);
status[r][c] = 1;
}
return ans;
}
};

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
class Solution {
public:
int removeStones(vector<vector<int>>& stones) {
const int n = stones.size();
vector<vector<int>> edges(n);
for (int i = 0; i < n; ++i)
for (int j = 0; j < n; ++j)
if ((stones[i][0] == stones[j][0]) || (stones[i][1] == stones[j][1]))
edges[i].emplace_back(j);
vector<bool> visited(n);
function<void(int)> dfs = [&](int x) {
visited[x] = true;
for (const int y : edges[x])
if (!visited[y])
dfs(y);
};
int cnt = 0;
for (int i = 0; i < n; ++i)
if (!visited[i]) {
++cnt;
dfs(i);
}
return n - cnt;
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
class Solution {
public:
int removeStones(vector<vector<int>>& stones) {
const int n = stones.size();
unordered_map<int, vector<int>> m;
for (int i = 0; i < n; ++i) {
m[stones[i][0]].emplace_back(i);
m[stones[i][1] + 10000].emplace_back(i);
}
vector<vector<int>> edges(n);
for (const auto& [_, vec] : m) {
const int k = vec.size();
for (int i = 1; i < k; ++i) {
edges[vec[i - 1]].emplace_back(vec[i]);
edges[vec[i]].emplace_back(vec[i - 1]);
}
}
vector<bool> visited(n);
function<void(int)> dfs = [&](int x) {
visited[x] = true;
for (const int y : edges[x])
if (!visited[y])
dfs(y);
};
int cnt = 0;
for (int i = 0; i < n; ++i)
if (!visited[i]) {
++cnt;
dfs(i);
}
return n - cnt;
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
class DisjointSetUnion {
private:
unordered_map<int, int> f, rank;
public:
int find(int x) {
if (f.find(x) == f.end()) {
f[x] = x;
rank[x] = 1;
}
return f[x] == x ? x : f[x] = find(f[x]);
}
void unionSet(int x, int y) {
int fx = find(x), fy = find(y);
if (fx != fy) {
if (rank[fx] > rank[fy])
swap(fx, fy);
rank[fy] += rank[fx];
f[fx] = fy;
}
}
int numberOfConnectedComponent() {
int cnt = 0;
for (auto &[x, fa] : f)
if (x == fa)
++cnt;
return cnt;
}
};
class Solution {
public:
int removeStones(vector<vector<int>> &stones) {
const int n = stones.size();
DisjointSetUnion dsu;
for (int i = 0; i < n; ++i)
dsu.unionSet(stones[i][0], stones[i][1] + 10000);
return n - dsu.numberOfConnectedComponent();
}
};

1
2
3
4
5
6
7
8
9
10
11
12
class Solution {
public:
vector<bool> prefixesDivBy5(vector<int>& A) {
vector<bool> ans;
int mask = 0;
for (const int i : A) {
mask = ((mask << 1) + i) % 5;
ans.emplace_back(mask == 0);
}
return ans;
}
};

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
class Solution {
public:
vector<int> findRedundantConnection(vector<vector<int>>& edges) {
const int n = edges.size();
vector<int> f(n + 1, 0);
vector<int> size(n + 1, 0);
auto find = [&](int i) {
int j = i;
while (i != f[i]) i = f[i];
while (j != i) {
int next = f[j];
f[j] = i;
j = next;
}
return j;
};
for (const auto& edge : edges) {
int u = edge[0], v = edge[1];
if (!f[u]) f[u] = u;
if (!f[v]) f[v] = v;
int uf = find(u), vf = find(v);
if (uf == vf) return edge;
if (size[vf] > size[uf])
swap(vf, uf);
f[vf] = uf;
size[uf] += size[vf];
}
return {};
}
};

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
class Solution {
public:
vector<int> sortItems(int n, int m, vector<int>& group, vector<vector<int>>& beforeItems) {
vector<vector<int>> groupItem(n + m);
int leftId = m;
for (int i = 0; i < n; ++i) {
if (group[i] == -1)
group[i] = leftId++;
groupItem[group[i]].emplace_back(i);
}

vector<vector<int>> groupGraph(n + m);
vector<vector<int>> itemGraph(n);
vector<int> groupDegree(n + m, 0);
vector<int> itemDegree(n, 0);
for (int i = 0; i < n; ++i) {
int curGroupId = group[i];
for (auto& item: beforeItems[i]) {
int beforeGroupId = group[item];
if (beforeGroupId == curGroupId) {
++itemDegree[i];
itemGraph[item].emplace_back(i);
} else {
++groupDegree[curGroupId];
groupGraph[beforeGroupId].emplace_back(curGroupId);
}
}
}

vector<int> id;
for (int i = 0; i < n + m; ++i)
id.emplace_back(i);
vector<int> groupTopSort = topSort(groupDegree, groupGraph, id);
if (groupTopSort.size() == 0)
return vector<int>{};

vector<int> ans;
for (auto& curGroupId: groupTopSort) {
int size = groupItem[curGroupId].size();
if (size == 0) continue;
vector<int> itemTopSort = topSort(itemDegree, itemGraph, groupItem[curGroupId]);
if (itemTopSort.size() == 0) return vector<int>{};
ans.insert(ans.end(), itemTopSort.begin(), itemTopSort.end());
}
return ans;
}
private:
vector<int> topSort(vector<int>& indeg, vector<vector<int>>& graph, vector<int>& items) {
queue<int> q;
for (auto& item: items)
if (indeg[item] == 0)
q.push(item);
vector<int> ans;
while (!q.empty()) {
int u = q.front(); q.pop();
ans.emplace_back(u);
for (auto& v: graph[u])
if (--indeg[v] == 0)
q.push(v);
}
return ans.size() == items.size() ? ans : vector<int>{};
}
};

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
class Solution {
public:
vector<int> findOrder(int numCourses, vector<vector<int>>& prerequisites) {
vector<vector<int>> edges(numCourses, vector<int>());
vector<int> indeg(numCourses, 0);
for (const auto& info : prerequisites) {
edges[info[1]].push_back(info[0]);
++indeg[info[0]];
}
queue<int> q;
for (int i = 0; i < numCourses; ++i)
if (indeg[i] == 0)
q.push(i);
vector<int> ans;
while (!q.empty()) {
int u = q.front(); q.pop();
ans.push_back(u);
for (int v: edges[u])
if (--indeg[v] == 0)
q.push(v);
}
return ans.size() == numCourses ? ans : vector<int>();
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
class Solution {
public:
vector<int> findOrder(int numCourses, vector<vector<int>>& prerequisites) {
edges.resize(numCourses);
visited.resize(numCourses);
for (const auto& info: prerequisites)
edges[info[1]].push_back(info[0]);
for (int i = 0; i < numCourses && valid; ++i)
if (visited[i] == 0)
dfs(i);
if (!valid) return vector<int>();
reverse(ans.begin(), ans.end());
return ans;
}
private:
vector<vector<int>> edges;
vector<int> visited;
vector<int> ans;
bool valid = true;
void dfs(int u) {
visited[u] = 1;
for (int v: edges[u])
if (visited[v] == 0) {
dfs(v);
if (!valid) return;
} else if (visited[v] == 1) {
valid = false;
return;
}
visited[u] = 2;
ans.push_back(u);
}
};

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
class Solution {
public:
bool canFinish(int numCourses, vector<vector<int>>& prerequisites) {
vector<vector<int>> edges(numCourses, vector<int>());
vector<int> indeg(numCourses, 0);
for (const auto& info : prerequisites) {
edges[info[1]].push_back(info[0]);
++indeg[info[0]];
}
queue<int> q;
for (int i = 0; i < numCourses; ++i)
if (indeg[i] == 0)
q.push(i);
while (!q.empty()) {
--numCourses;
int u = q.front(); q.pop();
for (int v : edges[u])
if (--indeg[v] == 0)
q.push(v);
}
return numCourses == 0;
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
class Solution {
public:
bool canFinish(int numCourses, vector<vector<int>>& prerequisites) {
edges.resize(numCourses);
visited.resize(numCourses);
for (const auto& info: prerequisites)
edges[info[1]].push_back(info[0]);
for (int i = 0; i < numCourses && valid; ++i)
if (visited[i] == 0)
dfs(i);
return valid;
}
private:
vector<vector<int>> edges;
vector<int> visited;
bool valid = true;
void dfs(int u) {
visited[u] = 1;
for (int v: edges[u])
if (visited[v] == 0) {
dfs(v);
if (!valid) return;
} else if (visited[v] == 1) {
valid = false;
return;
}
visited[u] = 2;
}
};
0%